Prediction of membrane protein types from sequences and position-specific scoring matrices.
نویسندگان
چکیده
Membrane protein plays an important role in some biochemical process such as signal transduction, transmembrane transport, etc. Membrane proteins are usually classified into five types [Chou, K.C., Elrod, D.W., 1999. Prediction of membrane protein types and subcellular locations. Proteins: Struct. Funct. Genet. 34, 137-153] or six types [Chou, K.C., Cai, Y.D., 2005. J. Chem. Inf. Modelling 45, 407-413]. Designing in silico methods to identify and classify membrane protein can help us understand the structure and function of unknown proteins. This paper introduces an integrative approach, IAMPC, to classify membrane proteins based on protein sequences and protein profiles. These modules extract the amino acid composition of the whole profiles, the amino acid composition of N-terminal and C-terminal profiles, the amino acid composition of profile segments and the dipeptide composition of the whole profiles. In the computational experiment, the overall accuracy of the proposed approach is comparable with the functional-domain-based method. In addition, the performance of the proposed approach is complementary to the functional-domain-based method for different membrane protein types.
منابع مشابه
Predicting secondary structures, contact numbers, and residue-wise contact orders of native protein structures from amino acid sequences using critical random networks
Predictions of one-dimensional protein structures such as secondary structures and contact numbers are useful for predicting three-dimensional structure and important for understanding the sequence-structure relationship. Here we present a new machine-learning method, critical random networks (CRNs), for predicting one-dimensional structures, and apply it, with position-specific scoring matrice...
متن کاملPrediction of Protein Relative Solvent Accessibility with Support Vector Machines and Long-range Interaction
The prediction of protein relative solvent accessibility gives us helpful information for the prediction of tertiary structure of a protein. The SVMpsi method which uses support vector machines (SVMs) and the position specific scoring matrix (PSSM) generated from PSI-BLAST has been applied to achieve better prediction accuracy of the relative solvent accessibility. We have introduced a three di...
متن کاملGenotyping Hepatitis B virus from whole- and sub-genomic fragments using position-specific scoring matrices in HBV STAR.
Hepatitis B virus (HBV) genomes have been classified into eight genotypes based on phylogenetic analysis of sequence variation. Identifying and tracking the movement of HBV genotypes is important in terms of both monitoring infection rates and predicting disease and treatment. An HBV genotyping tool has been developed that compares query sequences with position-specific scoring matrices represe...
متن کاملPrediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks
Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...
متن کاملCyclinPred: A SVM-Based Method for Predicting Cyclin Protein Sequences
Functional annotation of protein sequences with low similarity to well characterized protein sequences is a major challenge of computational biology in the post genomic era. The cyclin protein family is once such important family of proteins which consists of sequences with low sequence similarity making discovery of novel cyclins and establishing orthologous relationships amongst the cyclins, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 247 2 شماره
صفحات -
تاریخ انتشار 2007